Rank Position Forecasting in Car Racing
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Abstract—

I. INTRODUCTION

Deep learning based forecasting has been successfully ap-
plied in different domains, such as demand prediction [24],
traffic prediction [25], clinical state progression prediction
[28], epidemic forecasting [11], etc. It has the advantages
over traditional statistical models that is good at learning
complex models from multiple correlated high dimensional
time series. Compared with other machine learning models,
deep learning models are featured with powerful representation
learning capability which relieves the dependency on the need
of domain knowledge and the high cost of feature engineering.

However, when addressing the forecasting problem in the
specific domain of motor sports, we found that the state-of-
the-art models in this field are based on simulation meth-
ods or machine learning methods, all highly depend on the
domain knowledge [1], [15], [20], [33]. Simply applying a
deep learning model here does not deliver better forecasting
performance.

The forecasting problem in motor sports is challenging.
First, the status of the race is highly dynamic, which is the
collective effect of many factors, including the skills of the
drivers, the configuration of the cars, the interaction among
the cars, the dynamics of the racing strategies and events
out of control, such as mechanical failures and unfortunate
crashes that are hardly avoidable during the high speed racing.
Uncertainty resulted from exogenous factors is a critical ob-
stacle for the model to accurately forecast future. A successful
model needs to incorporate these cause effects and express the
uncertainty. Secondly, motor sports forecasting is a sparse data
problem, that available data are limited, because in each race
only one trajectory for each car can be observed. Moreover,
some factors, such as pit stop and crash, make huge influences
to the race dynamic, but are irregular and rare which appear
less than 5% in available data. Modeling these extreme events
are critical part of a model.

In this work, taking IndyCar series [4] as a use case, we
investigate these challenging issues in the forecasting problem,
and explore the solutions based on deep learning models. We
build car racing forecasting models based on deep encoder-
decoder network architecture, model the uncertainty that is
rooted from the dynamics of the racing, and achieve com-
parable forecasting performance compared with state-of-the-

art machine learning models. The work also enables strategy
optimization.

II. PROBLEM STATEMENT
A. Background

Indy500 is the premier event of IndyCar series. Each year,
33 cars compete on a 2.5 mile oval track for 200 laps. Fig.
1 shows the oval track setup. The track is split into several
sections, or timeline. E.g., SF/SFP indicate the start and finish
line on the track or the pit lane respectively. Sensors are buried
under the track at the boundaries of the sections, collecting
the timing information of the racing cars when they pass
the position. A local communication network is employed
to broadcast these collected information to all the teams,
following a general data exchange protocol [4].
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Fig. 1: Indy500 track setup [4].

Rank position is based on best time or race position,
updated at each timeline during the race. The final race results
are based on laps led and crossing order over SF/SFP. The start
position of each car is assigned according to its performance
in qualifying races. Before the beginning of a race, the cars
proceed forward row by row on the track, calls a warm up
period. When the race begins, all cars start to accelerate and
the timing starts at the time the first car crossing SF. Later on,
each car’s rank position of a lap is calculated by its elapsed
time that finishing the lap.

In motorsports, a pit stop is a pause for refuelling, new
tyres, repairs, mechanical adjustments, a driver change, as a
penalty, or any combination of the above [9]. As in Fig. 1, a
car turns into inner track at T3, slows down, enters into pit
lane between PL and PO. After refuel and tire changes, the
car merges back to the main track at T2.

Unexpected events happen in a race, including mechanical
failures or a crash. Depending to the serious level of the event,



sometimes it leads to a dangerous situation for other cars to
continue the racing with high speed on the track. In these
cases, a full course yellow flag raises to indicate the race
entering a caution laps mode, in which all the cars slow down
and follow a safety car and can not overtake until an other
green flag raised.

B. Rank position forecasting problem and challenges

Time

Behind Lap Track

Rank Carld Lap LapTime Leader Status Status
1 1 31 44.6091 0 T G
2 12 31 456879 1.6026 T G
3 21 31 43.3229 2.6397 T G
31 32 49 1146894 115.965 T Y
33 33 46 429.0577 14.2668 P Y

T:normal lap G:greenflag

P: pitstop lap Y : yellow flag/caution lap

(a) Rank can be calculated by LapTime and
TimeBehindLeader. LapStatus and TrackStatus
indicate racing status of pitstops and cuation
laps.
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(b) Rank and LapTime sequence of carl2, the final winner. Sequence dynamics
correlate to racing status.

Fig. 2: Data examples of Indy500-2018.

The task of rank position forecasting is to predict the future
rank position of a car given all observed history of the race.
Fig.2(a) shows the data collected by the sensors through the
on-premises communication network, the training data used
in this work. Fig.2(b) shows a typical Rank and LapTime
sequence. Both of them are stable in most of time, indicating
the predictable aspects of the race that the performance of the
driver is stable. However, they both show abruptly changes
when the racing status, including LapStatus and TrackStatus,
changes. Pit stops slow down the car and lead to lose of rank
position temporarily in the next few laps. Caution laps also
slow down the car but does not affect rank position apparently.

Fig.2(b) demonstrates the characteristic of highly dynamic
of this problem. The data sequence contains different phases,
affected by the racing status. As for pit stop decisions, a team
will have a initial plan for pit stops before the race, and the
coach of the team will adjust it dynamically according to
the status of the race. 'Random’ events, such as mechanical
failures and crashes, also make impacts the decision. There-
fore, even the cause effect between pit stop and rank position
is known, forecasting of rank is still challenging due to the
uncertainty in pit stop events. A few laps of adjustment to the
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Fig. 3: The main factors affecting Pit stop and their corresponding
features.

pit stop strategy may change the whole course of the race.
However, when assuming the pit stop on each lap is a random
variable, only one realization of its distribution is observed in
one race.

These challenges, if not addressed accordingly, will hurt
the forecasting performance of the model. Fig.5 illustrates the
limitations of typical existing methods.

C. Real-time leading car prediction

This project aims to predict the leading car in the future
through telemetry data generated in real time during the race.
In the Indy500 race and other events, each car is equipped with
multiple sensors. These sensors will record the car’s position,
speed, acceleration and other information in real time. After
some preprocessing, this information can be transformed into
a multivariate time series. We will use LSTM to predict these
time series, so as to achieve the purpose of real-time predicting
the game. Given a prediction step t,, and a time point ¢y in
the game, we predict the following two events: a) Whether
the currently leading car continue to lead at time tg + ¢,. b):
Which car is the leading car at time tg + ¢),.

III. MODELS
A. Pitstop factor analysis and feature selection

According to Figure 2, we see that the timing of Pit stop
has a great influence on the ranking in car racing. Previous
studies [16], [21], [33] did some preliminary analysis of the
factors that affect pit stop. In this section, we will deeply
study the causes of Pit stop based on the data of Indy500,
which will help us select the main features and build a
deep learning model. We divide the causes of Pit Stop into
three categories: resource constraints, anomaly events, and
human strategies.

a) Resource constraints: The distance between the two
pit stops is limited by the car’s fuel tank volume and the car’s
tires. Therefore, the car must enter the pit stop every distance
(30-40 laps). Fig. 4 (a) shows this rule. This type of pit stop
is called a normal pit stop.
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(b) Pit stop at lap 50 (caution pit).

Fig. 5: Illustration of the limitation of existing methods. Forecasting results of two laps in the future for car12. Pit stop at lap 94. (a)(b)Machine
learning models. SVM overfits to the normal laps(laps before 90). RandomForest fails to predict the change around pit stop. (c)Statistical
methods. ARIMA provides uncertainty predictions but lower performance, with difficulty to model the highly dynamics in the sequence.
(d)Proposed method. RankNet accurately captures the data pattern in normal laps and successes in predicting the dynamics with uncertainty

around pit stop.

b) Anomaly events: Anomaly events are usually caused
by mechanical failure or car accidents. When a serious ac-
cident occurs, TrackStatus will change to Yellow Flag,
which will change the strategy of pit stop. Fig. 4 shows the
statistics on the lap distance between two pit stops. In the
Indy500 dataset, the number of normal pit and caution pit
are close, 777 and 763 respectively. These two type of pit
stops show significant differences. In Fig. 4(b), normal pit
is a bell curve and caution pit scatter more evenly; In Fig.
4(b), the CDF curve shows the lap distance of normal pit
can be split into three sections, roughly from [0-23,24-40,40-
]. The lower section of short distance pit may caused mainly
by unexpected reason, such as mechanism failures, and keeps a
low probability less than 10%. The upper part of long distance
pit are mainly observed when lot of caution laps happen, in
which case the cars run at a reduced speed that results in

greatly reduced tyre wear and fuel burn for a distance travelled.
From these observations, modeling pit stop on the raw pit data
could be challenging and modeling on the normal pit data plus
removing the short distance section are more stable.

c) Human strategies: In actual competitions, participants
also need to make decisions based on information such as
the progress of the competition and the current ranking. In
most cases, human strategies are very delicate and difficult
to summarize with simple rules. One of the more obvious
examples is as follows: Fig 4(c) shows the 2018 Pit Laps
Distribution. Most racers choose to enter Pit stop on lap 170.
This is because the total length of the game is 200 laps, and
most contestants plan to start sprinting from lap 171. In order
to better understand human strategy, we need to combine the
ranking, team information, and historical data of past races to
train the model.



TABLE I: Summary of features used in the model

Feature Domain  Description Source
LapTime(N, L) R+ The time it took for car # N to complete lap L. [3]
. The distance of car # N from the starting line at time 7'. (Available

LapDistance(N,T) R+ for year 2017 - 2018)

PitstopLap N(List) A list of the laps where car # N entered the pitstop. [3]
Rank(N, L) N There are Rank(N, L) cars that completed lap L before car # N [2]
Placing(N,T) N At time ¢, there are Placing(IN,t) cars in front of car N. [3]
TrackStatus(N, L) {0,1} Status of each lap for a car #N, normal lap or caution lap. [2]
TimeBehindLeader(N,L) R+ Time behind the leader of car #N in lap #L. [2]
CautionLaps(N, L) N I;\,ft Lap L, the count of caution laps since the last Pit Lap of car
PitAge(N, L) N At lap L, the count of laps after the previous pit stop of car N.

CarlD {0,1}*®  Categorical car ID

B. Modeling uncertainty in high dynamic sequences

We treat the rank position forecasting as a sequence-to-
sequence modeling problem with the assumption that there
are enough information contained in the history to forecast
the future. An encoder-decoder architecture is employed to
map a input sequence z; 1.; to the output sequence z; ¢4 1:¢+#-
To modeling the uncertainty, we follow the idea proposed in
[29] to deliver probabilistic forecasting. Instead of predicting
value of target variable in the output sequence directly, a
probabilistic forecasting network predicts all parameters 6
(e.g., mean and variance) of the probability distribution. A
fixed distribution p(z;.|6; ) is parameterized by the output of
the network h; +.

We use z; ; to denote the value of time series ¢ at time ¢, x; ¢
to represent the covariate that are assumed to be known at any
given time. Our goal is to model the conditional distribution

P(% t:7|2i1:40—1, Xi,1:7)

We assume that our model distribution
Qo(2Zity:1|%i1:t0—1, Xi,1:7) consists of a product of likelihood
factors

T
H Q@(zi,t|zi,1:t71axi,1:T)

t=to

T
= H p(zi7t|9(hi,ta 6))

t=to

Q@(Zi,to:T|Zi,1:t071a Xi,l:T) =

(D
parametrized by the output h; ; of an autoregressive recur-
rent network

h,; =h(h; 1, 2i4-1,%Xit, 0)

where h is a function that is implemented by a multi-layer
recurrent neural network with LSTM cells parametrized by
O.

a) Training: The training process is divided into the
following steps:

1) At each time step ¢, input the covariate x; ., the value
of the previous time step z;;—1, and the state h;; ;
of the previous time step. Calculate the current state
h; ; = h(h; 1, 2i4—1,%;,) through the neural network.

2) Calculate the parameter 6, , = 6(h; ;) of the likelihood
p(=]0).
3) Maximize the log-likelihood:

N T
L= logp(zi4|0(his))

1=1 t=to

b) Prediction: After the training is completed, historical
data is fed into the network to obtain the initial state. Then
ancestral sampling is used to obtain the prediction results. The
prediction phase is divided into the following steps

1) As shown in Fig. 5(b), an independent PitModel is used
to predict the covariates X;y1.¢+k-

2) Input the historical data at time step ¢ < tg into the
network to obtain the initial state h; ;1.

3) For time steps ¢,t 4+ 1,...7, randomly sample at each
time step to obtain sample Z;; ~ p(-|6;:). E.g., for a
Gaussian distribution,

(e, 0) = (210%) "2 exp(—(z — p)*/(20%)) (@)

This sampled value is used as the input for the next time
step.

4) Repeat step 3 to get a series of z samples. These sampled
values can be used to calculate the desired target values,
such as quantiles, expectations, etc.

Encoder-decoder architecture provides an advantage by sup-
porting to incorporate covariates known in the forecasting
period. For example, in sales demand forecasting, holidays are
known to be important factors to achieve good predictions.
These variables can be expressed as covariates inputs into
both the encoder network and decoder network. As we know,
caution laps and pit stops are important factors to the rank
position, therefore, can be considered as covariate inputs. But,
different from the holidays, these variables in the future are
unknown at the time of forecasting, leading to the need of
decomposing the cause effects in building the model.

C. Modeling extreme events and cause effects decomposition

Changes of race status, including pit stops and caution laps,
cause the phase changes of the rank position sequence. As a di-
rect solution to address this cause effect, we can model the race
status and rank position together and joint train the model in
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TABLE II: Dataset statistics and model parameters

# of time series 231
Granularity Lap
Domain R+
Encoder length 40
Decoder length 2

# of training examples 32K
Item input embedding dimension 57
Item output embedding dimension | 30
Batch size 32
Optimizer ADAM
Learning rate le-3
# of Istm layers 2

# of Istm nodes 40
Running time 2h

the encoder-decoder network. In this case, target variable z; ;
is a multivariate vector [Rank, LapStatus, TrackStatus].
However, this method fails in practice due to data sparsity.
The changes of race status are rare events, and targets of rare
events require different complexity of models. For example,
on average a car goes to pit stop for six times in a race.
Therefore, LapStatus, a binary vector with length equals to
200, contains only six ones, 3% effect data. When a long
length of context for rank position encoder is necessary, pit
stops are more like a first order Markov chain, i.e., the next
pitstop mainly depends on the previous one rather than the
ones further in the history. TrackStatus, indicating the crash
events, is even harder to predict.

We propose to decompose the cause effect of race status and
rank position in the model. RankNet, as shown in Fig. 6(a),
is composed with two sub-models. First, a PitModel forecasts
the future RaceStatus, in which LapStatus is predicted and
TrackStatus is set to zeros assuming no caution laps in
the future. Then the RankModel forecasts the future Rank
sequence.

Target variable Z; is not limited to Rank, it can be any vari-
able that enables the calculation of the rank position, includ-
ing: the rank position(Rank), time spend for a lap(LapTime),
time behind the leader in a lap(TimeBehindLeader). Rank,
as observed, is discrete variable which means its value lost

subtle performance differences among the cars. LapTime can
accurately reflect the performance of the race, but needs to
accumulate from the first lap into elapsed time when calculate
the rank position, and may suffer from accumulating error.
The last one, TimeBehindLeader, indicates rank directly and
contains correlated information across the cars.

RaceStatus is the most important feature in covariates X;.
TrackStatus indicates whether the current lap is a caution lap,
in which the car follows a safety car in controlled speed.
LapStatus indicates whether the current lap is a pit stop lap, in
which the car cross SF/SFP in the pit lane. Some other static
features can also be added into the input. For example, Carld
represents the skill level of the driver and performance of the
car.

Transformations are applied on these basic features to gener-
ate new features. Embedding for categorical Carld is utilized.
Accumulation sum transforms the binary status features into
’age’ features, generating features such as CautionLapsand
PitAge. Table I summarizes the definition of these features.
For efficiency, instead of sequences input and output, PitModel
in Fig.6(b) use CautionLaps and PitAge as input, and output
a scalar of the lap number of the next pit stop.

A rank position forecasting network is trained with a
fixed prediction length. In order to deliver a variable length
prediction, e.g., in predicting the rank positions between two
pit stops, we apply a fixed length forecasting regressively by
using previous output as input for the next prediction.

IV. EXPERIMENTS
A. Dataset

We evaluate our model on the car racing data of IndyCar
series [2]. The timing and score log data covers all the race
events of IndyCar series from 2008 to 2020. Take 2018 as an
example, which contains 17 events, six of them are racing on
the oval speedway.

One of the challenges in forecasting car racing is data
scarcity, because only one trajectory of each car was observed
in each race. We have to incorporate more similar data to learn



TABLE III: Short-term rank position forecasting(prediction leghth=2)

Dataset Indy500-2018 Indy500-2019

Model ToplAcc MAE 50-Risk  90-Risk | ToplAcc MAE 50-Risk  90-Risk
CurRank 0.72 134 0.097 0.097 0.73 1.16  0.080 0.080
ARIMA 0.68 263  0.097 0.087 0.57 225  0.082 0.075
RandomForest 0.51 .75  0.127 0.127 0.62 1.33  0.092 0.092
SVM 0.72 1.34  0.097 0.097 0.73 1.18  0.080 0.080
XGBoost 0.46 1.63  0.118 0.118 0.64 1.25  0.086 0.086
DeepAR 0.66 207  0.156 0.096 0.59 1.71 0.121 0.075
RankNet-Joint 0.73 1.75  0.140 0.086 0.68 1.63  0.116 0.073
RankNet-MLP 0.77 124  0.086 0.077 0.78 1.07  0.072 0.061
RankNet-Oracle | 0.85 1.11 0.080 0.073 0.86 098  0.067 0.061

TABLE IV: Short-term rank position forecasting(prediction leghth=2) of Indy500-2019

Dataset Normal lap Lap with events
Model SignAcc  MAE  50-Risk  90-Risk | SignAcc MAE 50-Risk  90-Risk
CurRank 0.95 0.11 0.01 0.01 0.60 1.86  0.13 0.13
RandomForest 0.80 0.38 0.03 0.03 0.51 1.93 0.13 0.13
SVM 0.95 0.11 0.01 0.01 0.59 1.86  0.13 0.13
XGBoost 0.79 0.23 0.02 0.02 0.55 192  0.13 0.13
RankNet-MLP 0.93 0.17  0.01 0.01 0.67 1.67  0.11 0.09
RankNet-Oracle | 0.93 0.17  0.01 0.01 0.81 1.50  0.10 0.09
TABLE V: Rank position changes forecasting between pit stops
Dataset Indy500-2018 Indy500-2019
Model SignAcc  MAE  50-Risk  90-Risk | SignAcc MAE  50-Risk  90-Risk
CurRank 0.10 4.15 0.259 0.234 0.15 4.33 0.280 0.262
RandomForest 0.57 3.55 0.222 0.221 0.51 431 0.277 0.276
SVM 0.61 342 0214 0.212 0.51 422  0.270 0.249
XGBoost 0.49 4.10  0.256 0.234 0.45 4.86  0.313 0.304
RankNet-MLP 0.68 3.83  0.240 0.163 0.62 433  0.286 0.223
RankNet-Oracle | 0.71 3.28 0.207 0.189 0.66 3.62 0234 0.215

a stable model. Using the historical data that are too long time
ago can be inefficient because many factors changes along the
time, including the skills of the drivers, configurations of the
cars and even the rules of the race. The same year data of
other races are ’similar’ in the status of the drivers, cars and
rules, but different length of the track leads to different racing
dynamics. In this paper, we use the data of the same event,
Indy500, from 2013 to 2019, with the data from 2013 to 2017
as training set and the other two years as test set.

B. Implementation and baselines

We build our model RankNet with the Gluonts framework
[13]. Gluonts is a library for deep-learning-based time series
modeling, enables fast prototype and evaluation. RankNet
is based on the DeepAR [29] implementation in Gluonts,
and share the same features, including: sharing parameters
between encoder and decoder, encoder implemented as a
stacking of two Istm layers(40 neurons by default), training
with ADAM(learing rate start from le-3, end at le-5).

First, we have a naive baseline which assumes that the rank
positions will not change in the future, denoted as CurRank.
Secondly, We implemented machine learning models as base-
lines that follow the ideas in [32] which forecast change of
rank position between two consecutive pit stops. As far as
we know, there is no open source model that forecast rank
position in car racing, and no related work on IndyCar series.

C. Evaluation

RankNet is a single model that able to forecast both short-
term rank position(TaskA) and long term change of rank posi-
tion between pitstops(TaskB). First, MAE/RMSE are general
metrics to evaluate average accuracy of all the predictions,
used for both tasks. Secondly, TaskA evaluates the accuracy of
correct predictions of the leader, denoted as ToplAcc. TaskB
evalutes the accuracy of correct predictions of the sign of the
change which indicating whether a car achieves a better rank
position or not, denoted as SignAcc.

Thirdly, a quantile based error metric p-risk [30] is used to
evaluate the performance of a probabilistic forecasting. When
a set of samples output by a model, the quantile p value of the
samples is obtained, denoted as 7 , then p-risk is defined as
22, - 2)((Z < Z,) — p), normalized by 3 Z;. It quantifies
the accuracy of a quantile p of the forecasting distribution.

D. Short-term rank position forecasting

Table III shows the evaluation results of four models in
a two laps rank position forecasting task. CurRank is one
baseline that predicts future with the current rank position.
RandomForest, SVM and XGBoost are popular machine re-
gression models that do point wise forecast. Detailed fea-
tures are presented in appendix VII-A. DeepAR is the deep
learning model using the same network architecture without



TrackStatus and LapStatus covariates, representing the state-
of-the-art time series modeling approach. RankNet-Joint is the
model that train target with pit stop jointly without decompo-
sition. RankNet-Oracle is the encoder-decoder network with
ground truth TrackStatus and LapStatus as covariates input.
It represents the best performance that can be obtained from
RankNet given the caution and pit stop information for a race.
RankNet-MLP is the forecasting model with a separate MLP
pit stop model. It forecasts rank position via forecasting pit
stops first and use the result as covariate input for rank position
forecasting.

As in Table III, CurRank demonstrates good performance.
72% leader prediction correct and 1.34 mean absolute error on
Indy500-2018 indicates that the rank position does not change
much within two laps. DeepAR is a powerful model but fails
to exceed CurRank, which reflects the difficulty of this task
that the pattern of the rank position variations are not easy to
learn from the history. Other machine learning models, and
RankNet-Joint all failed to get better accuracy than CurRank.
By contrast, RankNet-Oracle achieves significant better perfor-
mance than CurRank, with 19% better in ToplAcc and 17%
better in MAE. RankNet-MLP, our proposed model, is not
as good as RankNet-Oracle, but still able to exceed CurRank
more than 7% in both ToplAcc and MAE. It also achieves
more than 20% improvement of accuracy on 90-risk when
probabilistic forecasting get considered. Detailed comparsion
are presented in apeedix VII-B.

E. Stint rank position forecasting

Table V shows the results on TaskB, forecasting the rank
position changes between consecutive pit stops. CurRank can
not predict changes, thus gets the worst performance. Among
the three machine learning models, SVM shows the best per-
formance. RankNet-Oracle demonstrates its advantages over
all the machine learning models, indicating that once the
pit stop information is known, long term forecasting through
RankNet is more effective. Performance of RankNet-MLP
obtains significant better accuracy, more than 10%, on SignAcc
and 90-Risk over the machine learning models, while it has
a worse MAE and 50-Risk, also more than 10%. But it
forecasts future pit stops and thus different possibilities of
race status, which are not supported by the other baselines.
RankNet is promising to be used as a tool to investigate and
optimize pit stop strategy. Detailed comparison are presented
in appendix VII-C.

FE. LSTM for real-time leading car prediction

We analyzed the factors affecting pit stop in Section IILA.
Based on the above analysis, our training / prediction process
is divided into the following three steps:

a) Stream data interpolation: There are two main
sources of data: One is the game record from 2013 to 2019.
The other is telemetry data for 2017 and 2018. The race record
only includes the time spent in each section, and does not
include the precise location of every two cars at a certain point
in time. Telemetry data is a high-resolution data, each car will
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Fig. 7: Rank position prediction result comparison. Forecasting results
of two laps in the future for carl2.

TABLE VI: Leading Car prediction on streaming data. (prediction
length = 90 seconds)

Dataset Indy500-2018 | Indy500-2019
Leader prediction Acc  MAE | Acc MAE
RandomForest 0.71  1.04 0.71  1.08
SVM 0.78  1.00 0.77  1.04
XGBoost 0.75 101 0.75  1.02
LSTM 0.80 0.95 0.79 0.34
Leader change predic-

tion

RandomForest 0.76  0.24 0.74  0.26
SVM 0.82 0.18 0.82 0.18
XGBoost 0.80 0.20 0.81 0.19
LSTM 0.83 0.34 0.84 035

produce about 7 records per second, we can use telemetry data
to estimate the position of each car at any time. In order to
expand the training data set, we used interpolation to convert
ordinary race records into a time series of car positions. If we
assume that the speed of the car within each section does not
change, then the position of the car at time T can be calculated
as follows: LapDistance(T) = LTT2 :7%1. Ty and T are the
start and end time of the current section. L is the length of
the section.

b) Data preprocessing: The preprocessing mainly in-
cludes two operations. 1) Data normalization, scale the input
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Fig. 8: Real-time LSTM prediction model.

Input:(Batch,15,66)

data to the range of -1 to 1. 2) Data sorting. Due to the
symmetry of the input data, that is, any data exchanged
between two cars can still get a legal data set. Therefore, a
model with more parameters is required to learn this symmetry.
In order to avoid unnecessary complexity, we sort the data
according to the position of the car. That is, the data of the
current leading car is placed in the first column, the data of the
currently ranked second car is placed in the second column,
and so on. This helps to compress the model and improve
performance.

c¢) LSTM model: In actual training, we use the following
parameters. The input is a 15 * 66 tensor. The length of the
time series is S = 15 steps, and the interval between each
step is Ag = 20 seconds. Label is one hot encoding of the
leading car after ¢ seconds in the future. We used data from
year 2013 to 2018 for training. Then use the 2019 data to test
the accuracy of the trained model.

According to section III-A. The prediction problem of
racing cars has the characteristics of non-linearity, non-
periodicity, randomness, and timing dependence. The tradi-
tional statistical learning model (Naive Bayes, SVM, Simple
Neural Networks) is difficult to deal with the problem of time
series prediction, since the model is unable to understand
the time-series dependence of data. Traditional time series
prediction models such as ARMA / ARIMA can only deal
with linear time series with certain periodicity. The anomaly
events and human strategies in the racing competition make
these methods no longer applicable. Therefore, time series
prediction models (RNN, GRU, LSTM, etc.) based on deep
learning are more suitable for solving such problems. Table
VI shows the experimental results, which verify our hypothesis
that the time series prediction model based on deep learning
obtained the highest accuracy.

G. Performance Study of the Leading Car Prediction LSTM
Model

Although we used historical data to train the models, for
the nature of these prediction tasks, real time training and
continuous learning would be a more ideal approach in the
actual event, thus performance would be a great concern. We
have tackled this by using simple model architecture, and also
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have conducted experiments on various different platforms to
find suitable ones. Table VII has the experiments settings and
overall execution results.

One interesting result was that, unlike usual deep learning
applications where GPU usually significantly outperform CPU
platform, in our application where the model architecture is
simple and training data-sets are not huge, CPU performs
relatively well while GPU and VE has only modest speedup
(while for certain implementation it was even slower). A
performance study with tensorboard profiling can provide
some insights why this is the case.

Figure 9 shows the percentage breakdown of overwall
walltime spent on different operations based on tensorboard
profiling results of experiments running on different platforms,
while highlighting the most time-consuming major operations,
as identified from the theoretical architecture of an LSTM cell
as depicted in Figure 8.

Intel vTune [6] and Advisor [5] profiling of experiments on
CPU platform suggests similar results. Figure 10 shows the
roofline chart of the IndyCar ranking prediction running on the
CPU platform. The chart highlights the three operations - sum,
product, and logistic - in the lower tensorflow implementation
level. Based on the vTune profiling, these three operations
spent over 85% overall CPU time among the similar group of
operations that Intel Advisor identified as having most impact
on performance and that are good candidates to look into
for performance improvement. This corresponds well with the
observation from tensorboard profiling, considering these top
three operations are the lower level implementation of the
MatMul, Mul, Add, and Sigmoid in our experimented CPU
platform.

While on CPU platform the actual walltime were spent
mostly on the kernel operations (as shown in Figure 9), as
identified from the LSTM model architecture, the charts for
GPU and VE platforms show quite different results.

For GPU, while using the same operation-by-operation
approach without the support of CudnnRNN optimization
(Figure 9b), the walltime spent on the same kernels were
only about 40%, while over half of the walltime were from
the auxiliary operations and data movement overhead. GPU



TABLE VII: Experiments Hardware Specification and Overall Performance of the Leading Car Prediction LSTM Model Running on Different
Platforms. The model was implemented as a tensorflow keras model. CPU and GPU experiments used the official v2.0 tensorflow, while
Vector Engine (VE) used a experimental forked version from the same version [10]. The cpu-only results were using only CPU resources
on each specified platform. The results were training speed (us/sample). The speed up showed the results with accelerator compared to the
cpu-only results for that platform. For GPU platform, one result was with CudnnRNN support and the other one without.

Platform CPU  with speedup  Hardware
only  Accelerator Specification
CPU 268 Intel Xeon E5-2670 v3
@2.30GHz, with 128G RAM
CPU+GPU 299 397 0.75 Intel Xeon CPU E5-2630 v4,
244 (with 1.22 with 128G RAM;
CudnnRNN) GPU (V100-SXM2-16GB)
CPU+VE 262 223 1.17 Intel Xeon Gold 6126 CPU
@2.60GHz, with 192G RAM;
VE (SX-Aurora Vector Engine)
cpPU  GPU | VE
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Fig. 9: Operation Walltime Percentage on Different Platforms. On CPU platform (a), the kernel operations (MatMul, Mul, Add, Sigmoid,
Tanh) accounts for over 75% of the overall walltime spent. On GPU platform (b), 2/3 walltime were spent on the accelerator side but only
40% were spent on the kernels and 25% were on other auxiliary operations. On VE platform (c) about 80% walltime spent on CPU side
while the rest were offloaded to VE side. On GPU platform with CudnnRNN support (d), due to the CudnnRNN optimization the major

operations were not the same kernel operations.
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Fig. 10: Roofline chart of the IndyCar Ranking Prediction Model
Running on the CPU Platform. The chart hightlights the operations
in the lower tensorflow implementation level of the identified kernels
- MatMul, Mul, Add, and Sigmoid.

with CudnnRNN optimization (Figure 9d) has improved this
situation by minimizing the overhead and fully utilizing the
hardware advantage of GPU. This optimization for LSTM and
RNN models in CUDA library [8], [14] includes combining

and streaming matrix multiplication operations to improve the
parallelism as well as fusing point-wise operations to reduce
data movement overhead and kernel invocation overhead,
among other tricks for more complex model. The result was a
faster execution time with a 1.22x speedup, comparing to the
operation-by-operation approach which was actually slower
than the CPU-only approach.

Vector Engine on NEC SX-Aurora machine provides an-
other possible good fit due to its high memory bandwidth and
high efficiency for vectorized operations. Figure 9c shows the
same operation percentage breakdown and allocation between
Vector Host (CPU) and VE. Among the kernel operations,
Sigmoid and Tanh were all offloaded to the VE side, while for
MatMul, Mul, and Add the operations occurred on both side.
The offloading strategy of certain operations from VH to VE
was based on the criteria that the potential walltime saved can
offset the overhead from offloading, so the small insignificant
calculations would be just handled on CPU side. Still, the
overhead from auxiliary operations and data movement was
quite significant. If similar fusing operation strategy were to



applied, this large portion of the overhead could be potentially
minimized thus achieving higher speedup.

In either GPU or VE case, for more complex model and
larger data we expect the benefit from operation offload-
ing from CPU to accelerator would largely exceed the data
movement and kernel launch overhead thus obtaining higher
speedup. We have observed this during the iteration of model
optimization, when we experimented on one previous similar
but more complex model, in which we observed about 2x
speedup for both GPU and VE.

V. RELATED WORK

Forecasting in general: Forecasting is a heavily studied
problem interested across domains. decomposition to address
uncertainty. Classical statistical methods(e.g,ARIMA and ex-
ponential smoothing) and machine learning methods(e.g, SVR,
Random Forest and XGB) are wildly applied in the problems
with few of randomness, non-stationary and irregularity. To
deal with the problem of high uncertainty, decomposition and
ensemble is often used to separate the uncertainty signals
from the normal patterns and model them in dependently. [26]
utilizes the Empirical Mode Decomposition [22] algorithm to
decompose the load demand data into several intrinsic mode
functions and one residue, then models each of them separately
by a deep belief network, finally forecast by the ensemble
of the sub-models. Another type of decomposition occurs
in local and global modeling. ES-RNN [31], winner of M4
forecasting competition [7], hybrids exponential smoothing to
capture non-stationary trends per series and learn global effects
by RNN, ensemble the outputs finally. Similar approaches are
adopted in DeepState [27], DeepFactor [35]. In this work,
based on the understanding of the cause effects of the problem,
we decompose the uncertainty by modeling the causal factors
and the target series separately and hybrid the sub-models
according to the cause effects relationship. Different from
the works of counterfactual prediction [12], [19], we do not
discover causal effects from data.

modeling extreme events. Extreme events [23] are featured
with rare occurrence, difficult to model, and their prediction
are of a probabilistic nature. [24], [36] use a autoencoder to
capture complex time-series dynamics during extreme events,
show improved results. Autoencoder shows improve results
in capturing complex time-series dynamics during extreme
events, such as [24] for uber riding forecasting and [36] which
decomposes normal traffic and accidents for traffic forecasting.
[17] proposes to use a memory network with attention to
capture the extreme events pattern and a novel loss function
based on extreme value theory. In our work, we classify
the extreme events in car racing into different categories,
model the more preditable pit stops in normal laps by MLP
with probabilistic output. Exploring autoencoder and memory
network can be one of our future work.

express uncertainty in model. [18] first proposed to model
uncertainty in deep neural network by using dropout as a
Bayesian approximation. [36] followed this idea and success-
fully apply it to large-scale time series anomaly detection at
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Uber. Our work follows the idea in [29] that parameterizes
a fixed distribution with the output of a neural network. [34]
adopts the same idea and apply it to weather forecasting.

Car racing forecasting: Simulation-based method:Racing
simulation is widely used in motor sports analysis [1], [15],
[20]. To calculating the final race time for all the cars
accurately, a racing simulator models different factors that
impact lap time during the race, such as car interactions, tyre
degradation, fuel consumption, pit stop etc., via equations
with fine tuned parameters. Specific domain knowledge are
necessary to build successful simulation models. [20] presents
a simulator that reduce the race time calculation error to
around one second for Formula 1 2017 Abu Dhabi Grand Prix.
But, the author mentioned that user is required to provide the
pit stop information for every driver as an input.

Machine learning-based method: [16], [32] is a series of
work forecasting the decision-to-decision loss in rank posi-
tion for each racer in NASCAR. [32] describes how they
leveraged expert knowledge of the domain to produce a real-
time decision system for tire changes within a NASCAR race.
They chose to model the change in rank position and avoid
predicting the rank position directly since it is complicated
due to its dependency on the timing of other racers’ pit stops.
In our work, we aim to build a forecasting that rely less on
domain knowledge and investigate the pit stop modeling.

VI. CONCLUSION

In this work, we build rank position forecasting model for
car racing on IndyCar dataset. We adopt the deep learning
modeling approach that aims to do it best to automatically
extract features and learn effective model, reducing the de-
pendency on domain experts in other machine learning and
simulation approaches. A combination of encoder-decoder
network and separate MLP network that capable to deliver
probabilistic forecasting are proposed to model the pit stop
events and rank position in car racing.

Through extensive evaluation experiments, we find that
pit stop information is critical for rank position forecasting
tasks. Our proposed model achieves significant better accuracy
than baseline models when pit stop information are given.
When using predicted pit stop information, the model obtains
comparable performance in both the rank position forecasting
task and change of the rank position forecasting task, with
the advantages of needing less feature engineering efforts and
providing probabilistic forecasting that enables racing strategy
optimizations via our deep learning based model.

There are several limitations of this work. Since there are
not many related work, the performance evaluation in this
paper is still limited. An other major challenge lies in the
limitation of the volume of the dataset. Car racing is a one time
event that the observed data are always limited. Considering
to add extra information with finer granularity could be one
direction of our future work.
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VII. APPENDIX

A. Feature engineering and parameter tuning for machine
learning baselines

Three machine learning models, RandomForest, SVM and XG-
Boost, have been presented as baselines in the forecasting tasks.

First, performance of machine learning models rely heavily on
feature engineering, e.g., [33] employs more than one hundred of
features by the help of domain experts. In this work, we follow
the similar ideas of feature extraction for the machine learning
baselines in the following five aspects: global information, Rank,
LapTime, PitStop and features of the near neighbors, as in Table. VIIL.
RankNet, as a deep learning based forecasting model, demonstrates
its advantages over traditional machine learning methods in the low
cost of feature engineering, as the recurrent neural network learns
better feature representations from the input sequence than manual
feature extractions deployed in Table. VIIL

Hyper-parameter tuning is another important factor for these ma-
chine learning models. We deployed grid search and cross validation
to find the optimal hyper parameters. In contrast, RankNet has less
hyper parameters.

B. Short-term rank position forecasting

Fig.11 demonstrate the performance improvement over a strong
baseline CurRank for all the models. It shows that the three
machine learning models, deep learning model DeepAR and the
joint train model RankNet-Joint all failed to get better accuracy than



TABLE VIII: Features extracted for machine learning models. In short-term forecasting, a stage is defined as a window with length of the

same context_ length in RankNet. In stint forecasting, a stage is the laps between two consecutive pit stops.

Type Feature Meaning

start_position #rank at the beginning of the race
Gobal info stageid sequence id of stage

firststage is the first stage?
start_rank #rank at the forecasting position
start_rank_ratio #rank/totalcarnum
top_pack #rank in top5?
bottom_pack #rank in bottom5?

Rank average_.rank . .
change_in_rank 1st to 3rd moment of rank inprevious stage
rate_of_change
average_rank_all
change_in_rank_all Ist to 3rd moment of rank inall previous stages
rate_of_change_all
lapqme_green_mean_prev mean and std of the lap time in green laps of the previous stage
laptime_green_std_prev
ifipt%me_green_r‘nea?_all mean and std of the lap time in all green laps before

Laptime dpt}me_green_std_dll

1apt¥me_mean_prev mean and std of the lap time in all laps of the previous stage
laptime_std_prev
%Zggﬁz:gtlgﬁl_lau mean and std of the lap time in all laps before
pit_in_caution the previous pit in caution lap

Pi laps_prev lap number to the previous pitstop

itstop - - - -
cautionlaps_prev caution laps number to the previous pitstop
pittime_prev pit time of the previous pitstop
Neighbors’ Info nb_char.lge_m._rank features of three previous cars and three following cars

nb_laptime_difference
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Fig. 11: Performance comparison for short-term forecasting models
on Indy500-2018.

CurRank. By contrast, RankNet-Oracle achieves significant better
performance than CurRank, with 19% better in ToplAcc and 17%
better in MAE. RankNet-MLP, our proposed model, is not as good
as RankNet-Oracle, but still able to exceed CurRank more than
7% in both ToplAcc and MAE. It also achieves more than 20%
improvement of accuracy on 90-risk when probabilistic forecasting
get considered.

C. Stint rank position forecasting

For long-term forecasting, CurRank does not perform well.
Fig.12(a) demonstrate the performance improvement over a baseline
SVM for all the models. Performance of RankNet-MLP obtains
significant better accuracy, more than 10%, on SignAcc and 90-Risk
over the machine learning models, while it has a worse MAE and
50-Risk, also more than 10%.

Fig.12(b) shows an example of stint forecasting with 100 samples
at pit stop lap 94 for car 12 in Indy500-2018. When the observed

12

Performance Improvement over SVM
B signAcc @ MAE 50-Risk [ 90-Risk

0.23

013 o1
H 0.10 0.04
g 1
2 000 —
g [ ! T
E i
3 0.10 -0.05 0.04 0.04
g
g 012 0.10
E
§ -0.20 .
s 019 -0.20
-0.30
>3 S 2 S > 0 L > & 2 8 > & ¢ L
& & P ¥ & & W & ™ & & S
& & £ R & 0@"0 ° z\,@ & 0@°° & z\,@ S & L Q\,\“
& AP ¢ & & § & & &
& S o & &S & & S & & 8
L PO @ PO & PO & PO

*  observed
= forecast

15.0

125

0.0

75

Probability(%)

50

25

004

113114115116117 118 119 120 121 122 123 124 125 126 127 128 120 12 3 a4 5 6 1
Predicted Rank Posisiton of Next PitStop.

Predicted Lap of Next PitStop

Fig. 12: Performance comparison for stint forecasting models on
Indy500-2018.

next pit stop lap is 128, RankNet-MLP predicts it with probability
around 3%. Accordingly, observed rank at next pit stop is 1, and
RankNet-MLP predicts it with probability 22%. This deviation
comes from the uncertainty of extreme events and the bias of the
trained model. Because of the sparsity of data, the PitModel is
trained on data from 2013 to 2017, improvements of the cars enable
them run longer between pit stops at 2018, which may bring bias.

D. Impact of Oracle Features

An oracle model, a model given the future pit stop information as
input, can be used to represents the upper bound of performance that
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Fig. 13: Performance comparison of the oracle models for stint
forecasting models, on Indy500-2018.
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Fig. 14: Performance improvements over different prediction length,
on Indy500-2018.

a model can obtain when evaluated with the observed data.

As shown in Fig. 13, the three machine learning models are
inferior to RankNet over all the four metrics when oracle features
are provided. It supports the choice of deep models that have the
advantages in learning a better feature representations.

E. Impact of prediction length

RankNet-MLP shows stable performance advantages over other
machine learning models when increasing the prediction length. Fig.
14 demonstrates the performance improvements over CurRank model
on two metrics. Among all the models, RankNet-Oracle keeps the
best accuracy and RankNet-MLP follows and shows significant better
performance over the others.
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F. PitModel Evaluation

In this sub-section, we evaluate the performance of PitModel in
details. According to Section. III-A, we separate the pit stops into
three categories: caution pits, long normal pits(stint length longer than
23) and short normal pits((stint length shorter than or equal to 23).
Modeling trained on the raw pit data is supposed to be challenging
and modeling on the long normal pits with the short distance section
removed could to be more stable.

Table. IX and X shows the performance of PitModel trained
on the long normal pits dataset and the full dataset respectively. A
multilayer perceptron (MLP) of three layers with 10,5,5 neurons each
is deployed. Indy500-2013 to Indy500-2017 are used for training
and Indy500-2018 is used for testing. Beside MAE, 50-Risk and 90-
Risk, two new evaluation metrics are utilized, which are F1 score
and recall score for correctly predicting the occurrence of pitstop
at two laps in the future. In order to demonstrate more detailed
performance comparison, the evaluation results are itemized for the
three categories of pit stops, and for two types of the model, with
or without uncertainty forecasting support. Comparing across the
categories of pit stops, all the models obtain best performance in
the long normal pits testset, while fail in the short normal pits with
extraordinary large MAE and zero recall. Caution pits show poor
F1 and Recall, indicating that all the models are not capable to
predict caution pits accurately. When comparing over the two types
of model, the one with uncertainty support show significantly better
performance than the one without uncertainty support. The model
trained on long normal pits is marginally better than the one trained
on the full dataset when testing on the long normal pits. Although
the latter one shows some advantages in predicting caution pits, the
previous one is still preferred because caution pits have much less
impacts on the downstream task of rank position forecasting.

Fig. 15 demonstrates the probability of pit stop in two laps
forecasting for Carl2 in Indy500-2018. Models with uncertainty
support(Fig.15b&c) shows obvious better coverage than the one
without uncertainty output(Fig.15a), which misses all the ground
truth. Model trained on long normal pits(Fig.15b) delivers more
certain forecasting around the normal pit stops compared with the
one trained on full dataset(Fig.15¢), at the cost of failing to predict
a short caution lap pit stop on lap 50.

G. Model feature comparison
See Table. XI

H. Impacts of the pit stop type on rank positions



TABLE IX: MLP PitModel performance comparison(trained by long normal pits data)

With Uncertainty Without Uncertainty
TestSet MAE 50-Risk  90-Risk  Fl@2laps Recall@2laps | MAE 50-Risk  90-Risk  Fl@2laps  Recall@2laps
long normal pits 4.55 0.243 0.230 0.31 0.76 4.75 0.254 0.429 0.27 0.45
short normal pits | 923.04 0.983 1.763 0.00 0.00 | 923.28 0.983 1.768 0.00 0.00
caution pits 10.47 0.913 0.269 0.02 0.03 10.47 0.913 0.301 0.01 0.01
TABLE X: MLP PitModel performance comparison(trained by all data)
With Uncertainty Without Uncertainty
TestSet MAE 50-Risk  90-Risk  Fl@2laps Recall@2laps | MAE 50-Risk  90-Risk  Fl@2laps  Recall@2laps
long normal pits 6.04 0.322 0.121 0.33 0.52 | 122.04 6.546 1.309 0.00 0.00
short normal pits | 924.08 0.984 1.749 0.00 0.00 | 837.72 0.892 1.594 0.00 0.00
caution pits 8.72 0.766 0.376 0.01 0.01 | 120.42 10.578 2.116 0.00 0.00
TABLE XI: Features comparison of the rank position forecasting models
Model Feature Extraction Uncertainty ~ PitModel Variable Length Forecasting
Arima Auto N N Y
ML(RFESVM,XGB) | Mannual N N N
LSTM Auto(LSTM Encoder) N N N
DeepAR Auto(LSTM Encoder) Y N Y(LSTM Decoder)
RankNet-Joint Auto(LSTM Encoder) Y Y(Joint Train) Y(LSTM Decoder)
RankNet-MLP Auto(LSTM Encoder) Y Y (Decomoposition)  Y(LSTM Decoder)
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Fig. 16: Distribution of the rank position changes before and after
a pit stop. Caution pits has much less impacts on rank position

compared with normal pits.
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